Effects of Alloying Elements on the Formation of Core-Shell-Structured Reinforcing Particles during Heating of Al–Ti Powder Compacts
نویسندگان
چکیده
To prepare core-shell-structured Ti@compound particle (Ti@compoundp) reinforced Al matrix composite via powder thixoforming, the effects of alloying elements, such as Si, Cu, Mg, and Zn, on the reaction between Ti powders and Al melt, and the microstructure of the resulting reinforcements were investigated during heating of powder compacts at 993 K (720 °C). Simultaneously, the situations of the reinforcing particles in the corresponding semisolid compacts were also studied. Both thermodynamic analysis and experiment results all indicate that Si participated in the reaction and promoted the formation of Al-Ti-Si ternary compounds, while Cu, Mg, and Zn did not take part in the reaction and facilitated Al₃Ti phase to form to different degrees. The first-formed Al-Ti-Si ternary compound was τ1 phase, and then it gradually transformed into (Al,Si)₃Ti phase. The proportion and existing time of τ1 phase all increased as the Si content increased. In contrast, Mg had the largest, Cu had the least, and Si and Zn had an equivalent middle effect on accelerating the reaction. The thicker the reaction shell was, the larger the stress generated in the shell was, and thus the looser the shell microstructure was. The stress generated in (Al,Si)₃Ti phase was larger than that in τ1 phase, but smaller than that in Al₃Ti phase. So, the shells in the Al-Ti-Si system were more compact than those in the other systems, and Si element was beneficial to obtain thick and compact compound shells. Most of the above results were consistent to those in the semisolid state ones except the product phase constituents in the Al-Ti-Mg system and the reaction rate in the Al-Ti-Zn system. More importantly, the desirable core-shell structured Ti@compoundp was only achieved in the semisolid Al-Ti-Si system.
منابع مشابه
The Effect of Impurity of Inert Atmosphere on Synthesis of Nanostructure TiAl (γ) Alloy by Mechanical Alloying Process
In this research, the high-energy planetary mill was employed to produce nanocrystalline Ti-50Al(γ)(at%) powders. Initial powders were mechanically alloyed in 99.9999% and 90% purities of Argon and also Air atmosphere with alloying times up to 50h. The effect of impurity of Argon atmosphere on the microstructure and the rate of phase transformation of Ti-50Al were investigated during mechanical...
متن کاملThe effect of mechanical activation on the kinetic and formation mechanism of a niobium aluminide based nanocomposite
In this paper the feasibility of NbAl3/Al2O3 nanocomposite formation through mechanochemical reaction between Al and Nb2O5 and the effect of mechanical activation on the kinetic and reaction mechanism were investigated. Structural and phase evolution during mechanical alloying were studied by employing transmission electron microscopy (TEM)...
متن کاملUnraveling the Effects of Process Control Agents on Mechanical Alloying of Nanostructured Cu-Fe Alloy
Nanostructured Cu-20Fe alloy was synthesized by mechanical alloying process and the effects of process control agents (PCA) on the phase formation, crystallite refinement and morphology of powder particles were studied. The dissolution of Fe into Cu matrix and the morphology of powder particles were analyzed by X-ray diffraction (XRD) technique and scanning electron microscopy (SEM), respective...
متن کاملA Comparative Study of the Synthesis and Thermal Stability of Nanostrucrured Al and Al-Mg Powders Fabricated by Mechanical Alloying Technique
Nanostructured Al and Al-Mg (Mg 30 wt. %) powders with the mean crystallite sizes of 42 and 11 nm were prepared through the solid state ball milling technique. The milling process was performed for various times up to 12 h in argon atmosphere and the synthesized powders were in detail characterized by different techniques. The effect of milling time and Mg addition on the size, morphology, chem...
متن کاملSynthesis of Nanostructure Ti-45Al-5Cr Alloy by Mechanical Alloying and Study the Effect of Cr Addition on Microstructure of TiAl Alloy
In this work, mechanical alloying was employed to produce Ti-50Al and Ti-45Al-5Cr (at%) alloys. Alloying was performed in a planetary mill and the alloying time varying from 5 to 70h. Characterization of the powder mixture was performed by X-ray diffraction (XRD), SEM analyses and DTA test, during mechanical alloying and after annealing at 1100°c in vacuum oven. The results showed, after 50h of...
متن کامل